

Description

The XE10NUC5VB TVS diode is designed to protect high speed data interfaces. It has been specifically designed protect sensitive electronic components which are connected to data and transmission lines from overvoltage caused by ESD (Electrostatic Discharge), EFT (Electrical Fast Transients) and CDE (Cable Discharge Events).

The XE10NUC5VB is in a DFN2510-10L package and will protect four high-speed lines. The typical capacitance between I/O pins is only 0.2pF which allows it to be used on circuits operating in excess of 3 GHz without signal attenuation. It may be used to provide ESD protection up to \pm 20kV Contact and \pm 25kV air discharge according to IEC61000-4-2, and withstand peak pulse current up to 40A(5/50ns) according to IEC61000-4-4 .5A (8/20us) according IEC61000-4-5.

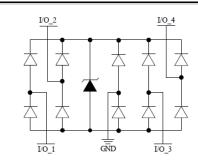
Features

- Working voltage: 5V
- ◆ Protect four I/O lines
- ◆ 100 Watts peak pulse power (t_p=8/20us)
- ◆ Transient protection for data lines to IEC 61000-4-2 (ESD) ±25kV (air),

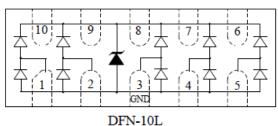
 \pm 20kV (contact)

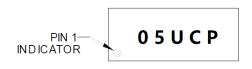
IEC 61000-4-4 (EFT)40A (8/20us) IEC 61000-4-5 (Surge)5A (8/20us)

- ◆ Low capacitance
- Low clamping voltage
- Low leakage current
- Solid-state silicon-avalanche technology


Applications

- High Definition Multi-Media Interface(HDMI)
- Unified Display Interface(UDI)
- ◆ Digital Visual Interface (DVI)
- MDDI Ports
- PCI Express
- Serial ATA


http//:www.xihangsemi.com

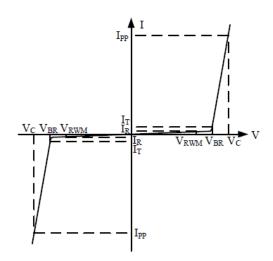

DFN2510-10L

Circuit Diagram

(Top View)

Marking

Order Information


Device	Package	Shipping
XE10NUC5VB	DFN2510-10L	3000/Tape&Reel

Rev.1.0 1 www.xihangsemi.com

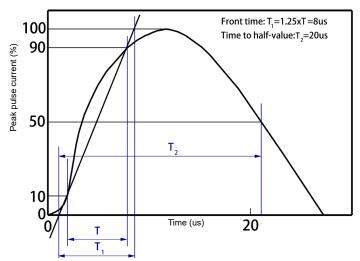
Definitions of electrical characteristics

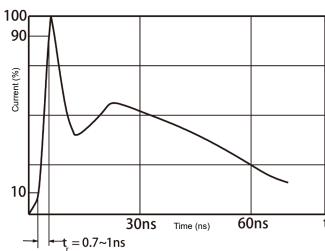
Symbol	Parameter		
V_{RWM}	Reverse Stand-off Voltage		
I _R	Reverse Leakage Current @ V _{RWM}		
V_{BR}	Reverse Breakdown Voltage @ I _⊺		
lτ	Test Current		
lpp	Reverse Peak Pulse Current		
Vc	Clamping Voltage @ I _{PP}		
l _F	Forward Current		
VF	Forward Voltage @ I _F		
Cj	Junction Capacitance		
lpp	Peak Pulse Current		

Absolute Maximum Rating

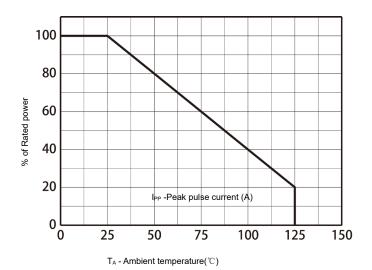
Rating	Symbol	Value	Units	
Peak Pulse Power (t _P = 8/20μS)	РРК	125	W	
Peak Pulse Current (t _P = 8/20µS)	lpp	5	А	
ESD according to IEC61000-4-2 air discharge	V	±25	kV	
ESD according to IEC61000-4-2 contact discharge	Vesd	±20	kV	
Lead Soldering Temperature	T∟	260 (10 sec)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	Tstg	-55 to +150	°C	

Rev.1.0 2 www.xihangsemi.com




Electrical Characteristics (Ta=25 $^{\circ}$ C, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Reverse Stand-off Voltage	V_{RWM}	Any I/O pin to ground			5.0	V
Reverse Breakdown Voltage	ge V _{BR} I _T =1mA 7.0 Any I/O pin to ground		7.0	9.0	11.0	٧
Reverse Leakage Current	I _R	V _{RWM} =5V,T=25℃ Any I/O pin to ground		0.1	1.0	μΑ
Clamping Voltage	Vc	I_{PP} =1A t_P = 8/20 μ s Any I/O pin to ground		10	12.5	V
		I_{PP} =5A t_P = 8/20 μ s Any I/O pin to ground		20	25	V
Junation Consoitance	CI/O - GND	V_R =0 V , f =1 MHz Any I/O pin to ground		0.3	0.5	pF
Junction Capacitance	C1/0 - 1/0	V_R =0 V ,f=1 MHz , Between I/O pins		0.2	0.4	pF


Typical Characteristics (Ta=25℃, unless otherwise noted)

8/20 us waveform per IEC61000-4-5

Contact discharge current waveform per IEC61000-4-2

Power derating vs. Ambient temperature

Rev.1.0 4 www.xihangsemi.com

Application Information

Figure 1 is an example of how to route the high speed differential traces through the XE10NUC5VB. The solid line represents the PCB trace. The PCB traces are used to connect the pin pairs for each line (pin 1 to pin 10, pin 2 to pin 9, pin 4 to pin 7, pin 5 to pin 6). For example, line 1 enters at pin 1 and exits at Pin 10 and the PCB trace connects pin 1 and 10 together. This is true for lines connected at pins 2, 4, and 5 also. Ground is connected at pins 3 and 8. One large ground pad should be used in lieu of two separate pads.

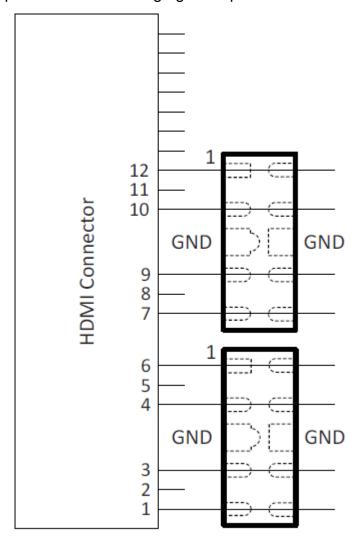
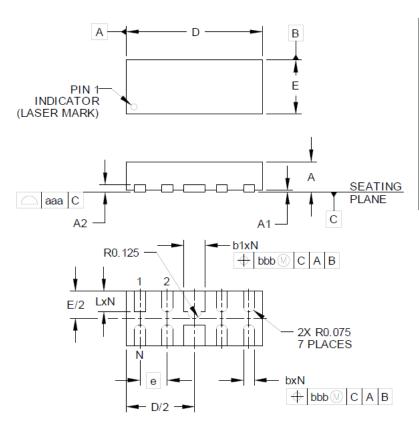
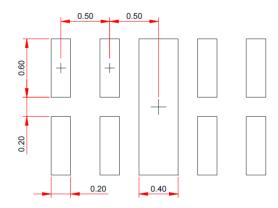



Figure 1. XE10NUC5VB

Rev.1.0 5 www.xihangsemi.com



Package Outline Dimensions (DFN2510-10L)

DIMENSIONS						
DIM	INCHES			MILLIMETERS		
	MIN	NOM	MAX	MIN	NOM	MAX
Α	.020	.023	.026	0.50	0.58	0.65
A1	0.00	.001	.002	0.00	0.03	0.05
A2		(.005)			(0.13)	
b	.006	.008	.010	0.15	0.20	0.25
b1	.014	.016	.018	0.35	0.40	0.45
D	.094	.098	.102	2.40	2.50	2.60
Ε	.035	.039	.043	0.90	1.00	1.10
е	.020 BSC		0.50 BSC			
L	.012	.015	.017	0.30	0.38	0.425
N	10		10			
aaa	.003		0.08			
bbb	.004 0.10					

Recommend Land Pattern (Unit: mm)

Note:

This recommended land pattern is for reference purpose only.

NOTICE

XIHANG's products are not authorized for use as components in any life support device or systems.

XIHANG reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. XIHANG does not assume any liability arising out of the application or use of any product described herein.

Rev.1.0 6 www.xihangsemi.com